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Collective proton transport with weak proton-proton coupling
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A mechanism based on the peculiar dynamical properties of the hydrogen bond is suggested to describe fast
proton transfers in hydrogen-bonded chains with realistieak intersite proton-proton interactions. For this
purpose, a two-sublattice model is suggested and studied analytically that admits an exact soliton solution. The
solitons, which are topological objectkinks and antikinks on the one hand, but dynamical entitiéi&e
Boussinesq solitonn the other hand, are shown to have a sufficiently large width to allow free propagation
along the chain.

PACS numbsdis): 63.20.Ry, 63.20.Pw

[. INTRODUCTION the coupled double-well mod¢R1,22. For instance, they
cannot exist as stablandingsolitary waves. On the other

There have been numerous attempts to model the protdmand, they are stillopologicalobjects and can be considered
transport in hydrogen-bondedHB) chains by two- as a different type of soliton in one-dimensional lattices.
componentattice topological solitongl—19|. The basic idea In Sec. Il, we discuss the potential and physical param-
in such a soliton modeling was to exploit the following re- eters needed to describe the proton dynamics in a single hy-
markable properties of H bonding;) the proton in each H drogen bond. The relationship of these parameters to those
bond of a HB chain can be found in two equilibrium posi- known for the pairwise proton-ion and ion-ion interactions
tions separated by a potential barrier, so that two degeneratge explicitly given in this section. In Sec. Ill, we obtain in
ground states of the chain - X—H---X—H---X—H---  the continuum limit an exact two-component soliton solution
and - --H—X---H—X---H—X--- are assumed to exist, and study its properties. The last section contains a summary
and (i) the height of the potential barrier that separates theynd conclusions.
two states depends strongly on the distance between adjacent
X atoms, so that a coupled motion of the protons andXhe
atoms may provide a barrier-lowering mechanism that allows |, e MODEL FOR A SINGLE HYDROGEN BOND
an easy proton transfer between the two equilibrium posi-
tions of the protons. A crucial point for the validity of the  The important point in a two-sublattice model for proton
soliton mechanism in such a chain was the assumption of thigansfers is anexplicit dependence of the shape of the
existence of a strong intersite proton-proton coupling. How-double-well potential on the relative distance between the
ever, according t@ab initio calculations of this couplingdl  adjacent ions that form this potential. The natural way to find
cal/mol A?) [20], realistic values of the potential barrier in the analytical expression for such a double-well potential is
the H bond are too high to allow free soliton propagationto construct it from two single pairwise potentials located at
because the so-called displacive limit in the chain of coupledarying distance from each other with opposite orientations.
double-well oscillatord21,22 is not valid and strong dis- In particular, any potential of the standard foriMorse or
creteness effects will pin the narrow kifg3]. The coupled Lennard-Jongscan be chosen for this purpose. Although a
motion of the H andX atoms was also shown to be insuffi- construction of this type has been implemented in many pa-
cient to lower the barrier enough to provide a free solitonpers (see, e.g., Ref410-13,15-1Y and othery neverthe-
regime. Even when this coupled motion is taken into acless we need to reconsider it here properly using a revised
count, the ionic defects in HB chains with realistic parameteprocedure. This is an important step because we are inter-
values[24] were shown to be very narrow obje¢t?]. ested in large-amplitude solutions of the resulting two-

In fact, this limitation appears because the models do notomponent model, when the amplitude of the background
take into account the full characteristics of the potential ensublattice is sufficient to allow the barrier for proton transfers
ergy surface of the chain. We show in this paper that a solibetween the wells to vanish. On the other hand, we do not
ton mechanism that does not require a strong coupling of thdiscuss very much in this paper the numerical values for the
protons in adjacent hydrogen bonds may exist if one properlparameters because they are discussed in many viseks
describes the nonlinear features of the hydrogen bonds. Theg., Refs[10,12,16,24,26—29%nd references thergimnd
solitons that we obtain are closer to the well-known latticeare not crucial for the validity of our solution.
(Boussinesq or Todaolitons[ 25] rather than to the kinks in Consider first a single isolated fragmefit—H- - - X of a

1063-651X/2000/6@)/57065)/$15.00 PRE 62 5706 ©2000 The American Physical Society



PRE 62 COLLECTIVE PROTON TRANSPORT WITH WEAK . .. 5707

04—
2% r
20
12 02r B
10
W
5 00r i
—02F .
o e -
FIG. 1. PotentiaV(u,p) created on the proton by the two lateral 04 o R —
-0.4 -0.2 0.0 0.2 0.4

Xions. The potential is plotted for various valuespfthe change
of the X- - - X distance with respect to its equilibrium value.
FIG. 2. Bifurcation diagram for the potenti®(u,p) showing
HB chain. Its total energy can be split into two parts asthe positions of the minima of the potential vergugull line) and
follows: the corresponding bifurcation diagram for the reduced potential de-
1 fined by Eq.(9) (dot-dashed ling
— 2

U(Up)=eoVitp)+ 2Kp% @ As shown by the quantum chemistry calculatigg], a
i ) i good approximation of the potential energy surfatecan
where the first term describes th(_a potent!al for the protorye constructed as the superposition of two symmetrically
created by the two latera{ atoms(ions) while the second gt ated ion-proton Morse potentials as well as an ion-ion
term represents the harmonic approximation of a renormalc()up“ng’ so that one can wrifd0—12,15,16,2B
ized (due to the presence of the middle protamteraction
between theX atoms. Herau is the displacement of the pro-

2
ton from the midpoint of the H bond, wheregasis the de- U(u,R)=D[l—exr{—,8(E—ro+u
viation of the distanc® between theX atoms from its equi- 2
librium distance(the lattice spacing), so thatp=R—1. The R P
dimensionless two-dimensional potential energy surface for + D[ 1—ex;{ _,3(_ —ro— u) }
the proton,V(u,p), can be calculated by quantum chemistry 2

by choosing a given distand® between theX atoms and 1
varying the displacement [26—28. For the isolated frag- + —Ko(R—Ry)?, 2
mentX—H- - - X, it has the shape shown in Fig. 1. When the 2
two X atoms are sufficiently far apa(the relative distancg
exceeds a certain critical valye), it has two minima sepa- whereD is the dissociation energy of the ion-proton interac-
rated by a potential barrier, so that the functid(u,p) ap-  tion andr its equilibrium distance. These parameters as well
pears as two valleys separated by a potential hill. The botas the paramete# can be evaluated on the basis of the linear
toms of these valleys, whose position is given by twodispersion law12] using available experimental dgt24] or
symmetric functionsu= *ugy(p) shown in Fig. 2, can be fitted from ab initio calculations[26,27,29. The stiffness
taken as the reference potential level and can be set toonstantk, and the distanc®, are effective(bare param-
V(% ug(p),p)=0. Moreover, we can normalize the function eters corresponding to a fictitiou§pure” ) ion subsystem
V(u,p) such that/(0,0)=1 and therefore turns out to be  consisting of onlyX- - - X fragments. The spring with stiff-
the height of the barrier when the latedabtoms are situated nessk, may be thought of as the result of a Coulomb inter-
at the equilibrium distanck action between nearest-neighbor ions in a one-dimensional
When p is reduced below the critical value,<0, the lattice with fixed boundary conditions. These parameters are
valleys merge intcone (Symmetrig potential energy mini- supposed to be sufficiently large as to provide a double-well
mum. In other words, at this point, the double-well topologytopology for the functionv(u,0). Sufficient criteria for its
of the proton potentiaV(u,p) is transformed into a single existence are given below in the form of inequalities.
well centered at the midpointuE& 0) of the H bond. This Using the conditiorU/du=0, from Eq.(2) we can ex-
behavior can be described by the bifurcation diagram showplicitly find the dependence,(R) that determines thésym-
in Fig. 2. The adjacenK atoms cannot pass through eachmetric) position of the minima as a function of the distance
other and thereforép.|<I. Obviously, under all these as- R. Next, representing in Eq2) the distanceR through the
sumptions, the total potenti@l) with K>0 will have only relative displacemenp by R=1+p, from the other extre-
two global minima (+a,0) on the (1,p) plane that corre- mum conditiondU(u=*=uy(R),R)/dR=0, one finds the
spond to the degenerate ground states of the chain. equation
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Ro—1=(2DBIKg)exd B(2ro—1)]1, 3 “dressed” X—H---X hydrogen bond. In other words,
Egs. (3), (4), and (6)—(8) determine the isomorphism of
which eliminates the linedin p) term in the sun(2). Equa-  the two sets, each consisting of five parameters:
tion (3) admits a unique solution if the inequality {D r;, wq;Ko,Ro}{e0,a,Q0;K,I}. The three inequalities
2D B exp(28ro)<KqRy holds. derived above for the bare parameters do not contradict each
As a result, up to a constant and anharmonic terms in thgther. The isomorphism of the variable s¢tsR}«—{u,p},
purep part, the sunt2) can be written in the fornil) where  which we already used above, is given by the equations
1\2 1 | =r—R/2 andp=1—R.
£0= D( 1— _) . a= —eXF{B(——ro”, (4) For ;ma!l values of_the parametgr an analog of thep* _
a 2 2 approximation can be introduced, and instead of the potential

. . _ ) (5) we can use its truncated version as follows:
is the height of the double-well potential at=0, which

itself is given by 2

2
Pl b=a2g>o0. 9)

u
V(U,p):(l_g'f‘g

©)

_ _ 2
V(U,p)=(a cosr(iu)_efp( ,8r/2)).

This simplified forms is essential to allow an analytical so-

The inequalitya>1 ensures a double-well form of the func- lution of the coupled dynamics of the H andions, but it
tion (5). The parameter condition for this existence can bepreserves the two-dimensional topology of the original po-
obtained using Eq(3). As a result, we obtain the inequality tential(5), which is a specific property of the hydrogen bond.
Ry>D B/2Ky+2i [In(2)/8+1,] as a constraint on the bare While it brings some small quantitative changes, the approxi-
parameters. mation (9) does not change the qualitative properties of the

In order to obtain the fornil) for the p part, i.e., to write  System. And, as we shall show below that the main point that
it as Kp?/2, one must keep only the harmonic contributionwe would like to stress in the paper depends only on the

and define the renormalized coupling constant qualitative properties of the solution, the approximat{®h
allows us to reach our conclusions from analytical calcula-
K=Ko—DB?%2a?, (6) tions rather than numerical simulations, which is more satis-
factory and illustrates the main ideas more clearly.
which must be pOSitive. It is sufficient thKTO> DIBZ/Z This For the reduced potentiag)' the bifurcation diagram is

harmonic approxir_natio_n is, however, not a severe _constrairﬁiven by up=0 if p<—b anduy=ay1+p/b for all p=
because the re_lat_lve distance b_e_twgen the hez_ivy ions _showso_ As shown in Fig. 2, it can provide a rather good ap-
only small deviations from equilibrium. For this potential, proximation of the actual bifurcation diagram given by the
the value ofp below which the two minima merge is given (ejjistic potential5) up to values op that approach 0.2 A,

by pc=—2In(a)/B. The bifurcation diagram in Fig. 2 is \hjch corresponds to a very large lattice distortion.
given by the equation cosBy)=a exp(Bp/2) for p>p. and

Up=0 for p<p.. In particular, when the ions are found in _
equilibrium (p=0), the minima+a, wherea=uy(p=0), IIl. DYNAMICS OF THE HB CHAIN: AN EXACT SOLITON
satisfy the equation SOLUTION

To write the total Hamiltonian of the HB one-dimensional
lattice system, we need to add an intersite proton-proton cou-

Finally, we need to mention such an important parametepl'ng' 'I;h|s mtergctl?rl IS neiﬁssar% tlo prr(])v_lde Otﬂ‘m o!e-
as the frequency of the small-amplitude oscillations of a progenerae ground states in the whole chain, othérwise any

ton around the minima of bot the painvise proton-ion po-y L2, SEE BT RARCS B O X e system
tential (at r=ry) and the double-well potentialat u= P P y '

+u,). In the former case the frequenay, is given bng It is, however, important to stress that, while this interaction

—2Dg%m where m=m. is the proton mass, whereas is essentia_ll to lift the d_egeneracy of the many possible states
: P N 2 of the chain, its magnitude does not need to be large for the
'E tge Iatger Saie the frequencilo(p) defined as() validity of the solitonlike solution that we are interested in.
= (9 "2”_(9” )[ufz_ Uo(p)J/m (:2an be_ represente_d througly As discussed in the Introduction, the realistic proton-proton
as Q°=[1—a “exp(-fp)lwy. This expression demon- jyeraction is expected to be weak, and moreover this is a
strates the softnening behavior of the frequency in theyarameter that is hard to determine accurately. It is therefore
double-well potential with decrease of the interionic distanc&g . nate that its value is not crucial for the validity of our

R (0—0 asp—pc). When the ions are in equilibrium, the yegyits, provided this interaction does not strictly vanish.
frequencies)o=0(p=0) andw, are related to each other  Therefore, the Hamiltonian of the chain can be written in

by the form
QO:\/]._C(_Z wq - (8)

Summarizing the results of this section, one may say that
we have established one-to-one correspondence between the
parameters and variables of the proton-ion interaction to-
gether with the bare ion-ion interaction and those of the

cosiiBa)=a. (7)

1 . 1
szn: (quﬁ+ EK(QnJrl_Qn)Z_"SOV(Un +Pn)

+1MQ2+ lsz (10)
2 n 2 njl?
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whereM is the mass of aX atom, x andK are the stiffness
constants of the proton-proton coupling and tKe--X

force, respectivelyy, is the displacement of the proton from

the midpoint in thenth bond when theX atoms are frozen,
andQ,, is the displacement of theth X atom from its equi-
librium position. The displacement in timth hydrogen bond

u, and its stretching, are expressed in terms of the dis-

placementg),, andQ,, as follows:

1
unIQn_E(Qn"'QnJrl)’ Pn=Qn+1—Qn. (11

Note that the model Hamiltoniafi0O) takes into account the
fact that the proton potentidf is moving together with the

adjacent heavy ions. This is an important feature, which wa;
missing in the original soliton model for proton transport

[1,4,6).
The corresponding equations of motion are

m.qn:K(qn+1_ZQn+Qn—l)_80fnv (12

. 1
Mpn=K(pn+1=2pn+pn-1)+&o E(fn+1_ fr1)

+gn+l_29n+gnl>a

wheref,=dV(u,,p,)/du, andg,=dV(u,,pn)/dpy, .
In the continuum limit 01=x), the discrete fields|,(t),

Qn(t), uy(t), andp,(t) are substituted by the corresponding

continuous fieldsy(x,t), Q(x,t), u(x,t), andp(x,t). Then
the set of Eqs(12) becomes

M( e — C50xx) = — €0, (13

M (pe— 02px) = 8ol (Fx 10400,

whereu=q—Q and p=1Q,. Here the two characteristic
velocities co=1«k/m and v,=1V/K/M have been intro-
duced. The function$=f(u,p) andg=g(u,p) are defined
by f=dV/ou andg=4dV/dp.

In the moving framewith velocityv, £&=x—ut), the sec-

ond equation is trivially integrated once. Next, integrating

these equations from« to & and setting to zero the inte-
gration constant, we find

9
V(g—Q,p),

(G0 e

(14)

]
m(v2-cd)lq’ + M(vz—vﬁ)p=80|2%V(q—Qyp),

where the prime denotes a derivative with resped.to
For the particular case of the potent(@), we can look for
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B b/lu¥a
Qo= = T+ abpm(v?=c2)2e4l
(16)
b 1+a?u’m(v2—c3)/2e,
Qo= lu 1+abum(v?—c§)/2eql’
and the inverse half-width
1 1+M(vi—v?)/m(ci—v?)
17)

B @ (1Ib) 2+ M(v2—vd) /28

This kink solution can be written in terms of the proton
gisplacements in the hydrogen bond and of the relative dis-
placements of th& atoms:

(18

u(é)=*atanh(ué),  p=poCcosh ?(uf),

wherepy=1u1Qo. The upper(lower) sign in Eqs.(16)—(18)
corresponds to the kintantikink) solutions.

For realistic parameter values, i.e., weak proton-proton
coupling as discussed above, the characteristic velogity
small. Therefore, it is reasonable to assume thatv,.
Then, the positivity of the right-hand side of Eq7) implies
the existence ofwo bandsof admissible soliton velocities:

0$U<Co, (19)

MU%"_m% 280'
V1= Vw<v< vg"—WEl)z. (20)

The former(slow) mode is actually the standard kink mecha-
nism proposed earlier for proton mobility in hydrogen-
bonded chains. However, as shown previoligly,12, these
solitons are narrow. This is confirmed by HG7) because,

for this low velocity band, the inverse widjla becomes very
large for smallcy. As a result, the continuum approximation
breaks down and the kinks are pinned by discreteness effects.
In contrast, for the latteffasy mode, the proton-proton cou-
pling is not important.

IV. CONCLUSIONS

The existence of the solitons studied above, which can be
referred to as HB solitons, is due to the specific two-
dimensional topology of the proton potentM(u,p). It is
important to notice that, as shown by Ed.7), at the left
edge of the HB soliton bandv(~uv4+0), the solitons be-
come infinitely wide «—0), while at the right edge they
collapse fu—0). Note that a similar behavior occurs for the
well-known (supersonig lattice solitong 25] which become
infinitely wide when their velocity is approaching the speed
of sound from above. The existence of a velocity range in
which the soliton is very broad shows that the solitons be-

a solution of this set of coupled equations in which the twolonging to the high velocity band can propagate even at very
fields are proportional to each other. This assumption leadgMall proton-proton coupling. It is important to stress that

to the two-component kink solution

a(é)=aetanh(ué), Q(&)=Qetani &),

with the amplitudes

(19

the existence of these broad solitons is not sensitive to the
parameter values, provided the two-dimensional potential en-
ergy surface has the qualitative shape shown in Figs. 1 and 2.
Another important conclusion is that the heavy-atom de-
formation component, at least for velocities sufficiently close
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to the left edge of the HB band, can bempressionali.e.,  chemistry calculations show that extended proton migration
po<0, for both kinks and antikinks. Moreover, this compres-must occur in a concerted fashion requiringiaward fluc-
sion for antikinks(positive defects exceeds that for kinks tuation of the O--- O distancd 30|, in agreement with the
(negative defecjsFinally, one can conclude that there existsassumptions that underlie our calculations. The validity of
in the band20) an interval such that the reasonable inequali-the HB soliton for a three-dimensional system is, however,
tiesau<1l and—1<py<0 hold. still an open question, as well as its stability in the presence
It should be noticed that for an antikinlpositive ionic  of thermal fluctuations that could destroy the coherence nec-
defec} the potential barrier disappears. The same is also truessary for its propagation.
for the kink solutions, but only for supersonic velocitias (
>v,) Whenau>Db/l. For subsonic velocities the barrier still ACKNOWLEDGMENTS
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