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Collective proton transport with weak proton-proton coupling
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A mechanism based on the peculiar dynamical properties of the hydrogen bond is suggested to describe fast
proton transfers in hydrogen-bonded chains with realistic~weak! intersite proton-proton interactions. For this
purpose, a two-sublattice model is suggested and studied analytically that admits an exact soliton solution. The
solitons, which are topological objects~kinks and antikinks! on the one hand, but dynamical entities~like
Boussinesq solitons! on the other hand, are shown to have a sufficiently large width to allow free propagation
along the chain.

PACS number~s!: 63.20.Ry, 63.20.Pw
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I. INTRODUCTION

There have been numerous attempts to model the pr
transport in hydrogen-bonded~HB! chains by two-
componentlattice topological solitons@1–19#. The basic idea
in such a soliton modeling was to exploit the following r
markable properties of H bonding:~i! the proton in each H
bond of a HB chain can be found in two equilibrium pos
tions separated by a potential barrier, so that two degene
ground states of the chain•••XuH•••XuH•••XuH•••

and •••HuX•••HuX•••HuX••• are assumed to exis
and ~ii ! the height of the potential barrier that separates
two states depends strongly on the distance between adja
X atoms, so that a coupled motion of the protons and thX
atoms may provide a barrier-lowering mechanism that allo
an easy proton transfer between the two equilibrium po
tions of the protons. A crucial point for the validity of th
soliton mechanism in such a chain was the assumption o
existence of a strong intersite proton-proton coupling. Ho
ever, according toab initio calculations of this coupling~41
cal/mol Å 2) @20#, realistic values of the potential barrier i
the H bond are too high to allow free soliton propagati
because the so-called displacive limit in the chain of coup
double-well oscillators@21,22# is not valid and strong dis
creteness effects will pin the narrow kink@23#. The coupled
motion of the H andX atoms was also shown to be insuf
cient to lower the barrier enough to provide a free solit
regime. Even when this coupled motion is taken into
count, the ionic defects in HB chains with realistic parame
values@24# were shown to be very narrow objects@12#.

In fact, this limitation appears because the models do
take into account the full characteristics of the potential
ergy surface of the chain. We show in this paper that a s
ton mechanism that does not require a strong coupling of
protons in adjacent hydrogen bonds may exist if one prop
describes the nonlinear features of the hydrogen bonds.
solitons that we obtain are closer to the well-known latt
~Boussinesq or Toda! solitons@25# rather than to the kinks in
PRE 621063-651X/2000/62~4!/5706~5!/$15.00
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the coupled double-well model@21,22#. For instance, they
cannot exist as stablestandingsolitary waves. On the othe
hand, they are stilltopologicalobjects and can be considere
as a different type of soliton in one-dimensional lattices.

In Sec. II, we discuss the potential and physical para
eters needed to describe the proton dynamics in a single
drogen bond. The relationship of these parameters to th
known for the pairwise proton-ion and ion-ion interactio
are explicitly given in this section. In Sec. III, we obtain
the continuum limit an exact two-component soliton soluti
and study its properties. The last section contains a summ
and conclusions.

II. THE MODEL FOR A SINGLE HYDROGEN BOND

The important point in a two-sublattice model for proto
transfers is anexplicit dependence of the shape of th
double-well potential on the relative distance between
adjacent ions that form this potential. The natural way to fi
the analytical expression for such a double-well potentia
to construct it from two single pairwise potentials located
varying distance from each other with opposite orientatio
In particular, any potential of the standard forms~Morse or
Lennard-Jones! can be chosen for this purpose. Although
construction of this type has been implemented in many
pers ~see, e.g., Refs.@10–13,15–17# and others!, neverthe-
less we need to reconsider it here properly using a rev
procedure. This is an important step because we are in
ested in large-amplitude solutions of the resulting tw
component model, when the amplitude of the backgrou
sublattice is sufficient to allow the barrier for proton transfe
between the wells to vanish. On the other hand, we do
discuss very much in this paper the numerical values for
parameters because they are discussed in many works~see,
e.g., Refs.@10,12,16,24,26–29# and references therein! and
are not crucial for the validity of our solution.

Consider first a single isolated fragmentXuH•••X of a
5706 ©2000 The American Physical Society
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HB chain. Its total energy can be split into two parts
follows:

U~u,r!5«0V~u,r!1
1

2
Kr2, ~1!

where the first term describes the potential for the pro
created by the two lateralX atoms~ions! while the second
term represents the harmonic approximation of a renorm
ized ~due to the presence of the middle proton! interaction
between theX atoms. Hereu is the displacement of the pro
ton from the midpoint of the H bond, whereasr is the de-
viation of the distanceR between theX atoms from its equi-
librium distance~the lattice spacingl ), so thatr5R2 l . The
dimensionless two-dimensional potential energy surface
the proton,V(u,r), can be calculated by quantum chemis
by choosing a given distanceR between theX atoms and
varying the displacementu @26–28#. For the isolated frag-
mentXuH•••X, it has the shape shown in Fig. 1. When t
two X atoms are sufficiently far apart~the relative distancer
exceeds a certain critical valuerc), it has two minima sepa
rated by a potential barrier, so that the functionV(u,r) ap-
pears as two valleys separated by a potential hill. The b
toms of these valleys, whose position is given by tw
symmetric functionsu56u0(r) shown in Fig. 2, can be
taken as the reference potential level and can be se
V„6u0(r),r…50. Moreover, we can normalize the functio
V(u,r) such thatV(0,0)51 and therefore«0 turns out to be
the height of the barrier when the lateralX atoms are situated
at the equilibrium distancel.

When r is reduced below the critical valuerc,0, the
valleys merge intoone ~symmetric! potential energy mini-
mum. In other words, at this point, the double-well topolo
of the proton potentialV(u,r) is transformed into a single
well centered at the midpoint (u50) of the H bond. This
behavior can be described by the bifurcation diagram sho
in Fig. 2. The adjacentX atoms cannot pass through ea
other and thereforeurcu, l . Obviously, under all these as
sumptions, the total potential~1! with K.0 will have only
two global minima (6a,0) on the (u,r) plane that corre-
spond to the degenerate ground states of the chain.

FIG. 1. PotentialV(u,r) created on the proton by the two later
X ions. The potential is plotted for various values ofr, the change
of the X•••X distance with respect to its equilibrium value.
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As shown by the quantum chemistry calculations@27#, a
good approximation of the potential energy surface~1! can
be constructed as the superposition of two symmetric
situated ion-proton Morse potentials as well as an ion-
coupling, so that one can write@10–12,15,16,28#

U~u,R!5DH 12expF2bS R

2
2r 01uD G J 2

1DH 12expF2bS R

2
2r 02uD G J 2

1
1

2
K0~R2R0!2, ~2!

whereD is the dissociation energy of the ion-proton intera
tion andr 0 its equilibrium distance. These parameters as w
as the parameterb can be evaluated on the basis of the line
dispersion law@12# using available experimental data@24# or
fitted from ab initio calculations@26,27,29#. The stiffness
constantK0 and the distanceR0 are effective~bare! param-
eters corresponding to a fictitious~‘‘pure’’ ! ion subsystem
consisting of onlyX•••X fragments. The spring with stiff-
nessK0 may be thought of as the result of a Coulomb inte
action between nearest-neighbor ions in a one-dimensi
lattice with fixed boundary conditions. These parameters
supposed to be sufficiently large as to provide a double-w
topology for the functionV(u,0). Sufficient criteria for its
existence are given below in the form of inequalities.

Using the condition]U/]u50, from Eq.~2! we can ex-
plicitly find the dependenceu0(R) that determines the~sym-
metric! position of the minima as a function of the distan
R. Next, representing in Eq.~2! the distanceR through the
relative displacementr by R5 l 1r, from the other extre-
mum condition dU„u56u0(R),R…/dR50, one finds the
equation

FIG. 2. Bifurcation diagram for the potentialV(u,r) showing
the positions of the minima of the potential versusr ~full line! and
the corresponding bifurcation diagram for the reduced potential
fined by Eq.~9! ~dot-dashed line!.
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R02 l 5~2Db/K0!exp@b~2r 02 l !#, ~3!

which eliminates the linear~in r) term in the sum~2!. Equa-
tion ~3! admits a unique solution if the inequalit
2Db exp(2br0),K0R0 holds.

As a result, up to a constant and anharmonic terms in
purer part, the sum~2! can be written in the form~1! where

«05DS 12
1

a D 2

, a5
1

2
expFbS l

2
2r 0D G , ~4!

is the height of the double-well potential atr50, which
itself is given by

V~u,r!5S a2cosh~bu!exp~2br /2!

a 21 D 2

. ~5!

The inequalitya.1 ensures a double-well form of the fun
tion ~5!. The parameter condition for this existence can
obtained using Eq.~3!. As a result, we obtain the inequalit
R0.Db/2K012i @ ln(2)/b1r0# as a constraint on the bar
parameters.

In order to obtain the form~1! for ther part, i.e., to write
it as Kr2/2, one must keep only the harmonic contributi
and define the renormalized coupling constant

K5K02Db2/2a2, ~6!

which must be positive. It is sufficient thatK0.Db2/2. This
harmonic approximation is, however, not a severe constr
because the relative distance between the heavy ions s
only small deviations from equilibrium. For this potentia
the value ofr below which the two minima merge is give
by rc522ln(a)/b. The bifurcation diagram in Fig. 2 is
given by the equation cosh(bu0)5a exp(br/2) for r.rc and
u050 for r<rc . In particular, when the ions are found
equilibrium (r50), the minima6a, where a[u0(r50),
satisfy the equation

cosh~ba!5a. ~7!

Finally, we need to mention such an important parame
as the frequency of the small-amplitude oscillations of a p
ton around the minima of both the pairwise proton-ion p
tential ~at r 5r 0) and the double-well potential~at u5
6u0). In the former case the frequencyv0 is given byv0

2

52Db2/m where m5mp is the proton mass, wherea
in the latter case the frequencyV0(r) defined asV2

5(]2U/]u2)@u56u0(r)#/m can be represented throughv0

as V25@12a22 exp(2br)#v0
2. This expression demon

strates the softnening behavior of the frequency in
double-well potential with decrease of the interionic distan
R (V→0 asr→rc). When the ions are in equilibrium, th
frequenciesV0[V(r50) andv0 are related to each othe
by

V05A12a22 v0 . ~8!

Summarizing the results of this section, one may say
we have established one-to-one correspondence betwee
parameters and variables of the proton-ion interaction
gether with the bare ion-ion interaction and those of
e
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‘‘dressed’’ XuH•••X hydrogen bond. In other words
Eqs. ~3!, ~4!, and ~6!–~8! determine the isomorphism o
the two sets, each consisting of five paramete
$D,r 0 ,v0 ;K0 ,R0%↔$«0 ,a,V0 ;K,l %. The three inequalities
derived above for the bare parameters do not contradict e
other. The isomorphism of the variable sets$r ,R%↔$u,r%,
which we already used above, is given by the equationu
5r 2R/2 andr5 l 2R.

For small values of the parameterb, an analog of thef4

approximation can be introduced, and instead of the poten
~5! we can use its truncated version as follows:

V~u,r!5S 12
u2

a2 1
r

bD 2

, b5a2b.0. ~9!

This simplified forms is essential to allow an analytical s
lution of the coupled dynamics of the H andX ions, but it
preserves the two-dimensional topology of the original p
tential~5!, which is a specific property of the hydrogen bon
While it brings some small quantitative changes, the appro
mation ~9! does not change the qualitative properties of
system. And, as we shall show below that the main point t
we would like to stress in the paper depends only on
qualitative properties of the solution, the approximation~9!
allows us to reach our conclusions from analytical calcu
tions rather than numerical simulations, which is more sa
factory and illustrates the main ideas more clearly.

For the reduced potential~9!, the bifurcation diagram is
given by u050 if r,2b and u05aA11r/b for all r>
2b. As shown in Fig. 2, it can provide a rather good a
proximation of the actual bifurcation diagram given by t
realistic potential~5! up to values ofr that approach 0.2 Å ,
which corresponds to a very large lattice distortion.

III. DYNAMICS OF THE HB CHAIN: AN EXACT SOLITON
SOLUTION

To write the total Hamiltonian of the HB one-dimension
lattice system, we need to add an intersite proton-proton c
pling. This interaction is necessary to provide onlytwo de-
generate ground states in the whole chain, otherwise
disordered state with protons at the left or right of t
double-well potential would be a possible state in the syst
It is, however, important to stress that, while this interacti
is essential to lift the degeneracy of the many possible st
of the chain, its magnitude does not need to be large for
validity of the solitonlike solution that we are interested i
As discussed in the Introduction, the realistic proton-pro
interaction is expected to be weak, and moreover this
parameter that is hard to determine accurately. It is there
fortunate that its value is not crucial for the validity of ou
results, provided this interaction does not strictly vanish.

Therefore, the Hamiltonian of the chain can be written
the form

H5(
n

S 1

2
mq̇n

21
1

2
k~qn112qn!21«0V~un ,rn!

1
1

2
MQ̇n

21
1

2
Krn

2D , ~10!
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whereM is the mass of anX atom,k andK are the stiffness
constants of the proton-proton coupling and theX•••X
force, respectively,qn is the displacement of the proton from
the midpoint in thenth bond when theX atoms are frozen
andQn is the displacement of thenth X atom from its equi-
librium position. The displacement in thenth hydrogen bond
un and its stretchingrn are expressed in terms of the di
placementsqn andQn as follows:

un5qn2
1

2
~Qn1Qn11!, rn5Qn112Qn . ~11!

Note that the model Hamiltonian~10! takes into account the
fact that the proton potentialV is moving together with the
adjacent heavy ions. This is an important feature, which w
missing in the original soliton model for proton transpo
@1,4,6#.

The corresponding equations of motion are

mq̈n5k~qn1122qn1qn21!2«0f n , ~12!

M r̈n5K~rn1122rn1rn21!1«0S 1

2
~ f n112 f n21!

1gn1122gn1gn21D ,

where f n5]V(un ,rn)/]un andgn5]V(un ,rn)/]rn .
In the continuum limit (nl5x), the discrete fieldsqn(t),

Qn(t), un(t), andrn(t) are substituted by the correspondin
continuous fieldsq(x,t), Q(x,t), u(x,t), andr(x,t). Then
the set of Eqs.~12! becomes

m~qtt2c0
2qxx!52«0f , ~13!

M ~r tt2v0
2rxx!5«0l ~ f x1 lgxx!,

where u5q2Q and r5 lQx . Here the two characteristi
velocities c05 lAk/m and v05 lAK/M have been intro-
duced. The functionsf 5 f (u,r) andg5g(u,r) are defined
by f 5]V/]u andg5]V/]r.

In the moving frame~with velocity v, j5x2vt), the sec-
ond equation is trivially integrated once. Next, integrati
these equations from2` to j and setting to zero the inte
gration constant, we find

m~c0
22v2!q95«0

]

]q
V~q2Q,r!, ~14!

m~v22c0
2!lq81M ~v22v0

2!r5«0l 2
]

]r
V~q2Q,r!,

where the prime denotes a derivative with respect toj.
For the particular case of the potential~9!, we can look for

a solution of this set of coupled equations in which the t
fields are proportional to each other. This assumption le
to the two-component kink solution

q~j!5q0tanh~mj!, Q~j!5Q0tanh~mj!, ~15!

with the amplitudes
s

ds

q052
b/ lm7a

16abmm~v22c0
2!/2«0l

,

~16!

Q052
b

lm

11a2m2m~v22c0
2!/2«0

16abmm~v22c0
2!/2«0l

,

and the inverse half-width

m25
1

a2

11M ~v0
22v2!/m~c0

22v2!

~ l /b!21M ~v0
22v2!/2«0

. ~17!

This kink solution can be written in terms of the proto
displacements in the hydrogen bond and of the relative
placements of theX atoms:

u~j!56a tanh~mj!, r5r0 cosh22~mj!, ~18!

wherer05 lmQ0. The upper~lower! sign in Eqs.~16!–~18!
corresponds to the kink~antikink! solutions.

For realistic parameter values, i.e., weak proton-pro
coupling as discussed above, the characteristic velocityc0 is
small. Therefore, it is reasonable to assume thatc0,v0.
Then, the positivity of the right-hand side of Eq.~17! implies
the existence oftwo bandsof admissible soliton velocities:

0<v,c0 , ~19!

v1[AMv0
21mc0

2

M1m
,v,Av0

21
2«0l 2

b2M
[v2 . ~20!

The former~slow! mode is actually the standard kink mech
nism proposed earlier for proton mobility in hydroge
bonded chains. However, as shown previously@20,12#, these
solitons are narrow. This is confirmed by Eq.~17! because,
for this low velocity band, the inverse widthm becomes very
large for smallc0. As a result, the continuum approximatio
breaks down and the kinks are pinned by discreteness eff
In contrast, for the latter~fast! mode, the proton-proton cou
pling is not important.

IV. CONCLUSIONS

The existence of the solitons studied above, which can
referred to as HB solitons, is due to the specific tw
dimensional topology of the proton potentialV(u,r). It is
important to notice that, as shown by Eq.~17!, at the left
edge of the HB soliton band (v→v110), the solitons be-
come infinitely wide (m→0), while at the right edge they
collapse (m→`). Note that a similar behavior occurs for th
well-known ~supersonic! lattice solitons@25# which become
infinitely wide when their velocity is approaching the spe
of sound from above. The existence of a velocity range
which the soliton is very broad shows that the solitons
longing to the high velocity band can propagate even at v
small proton-proton coupling. It is important to stress th
the existence of these broad solitons is not sensitive to
parameter values, provided the two-dimensional potential
ergy surface has the qualitative shape shown in Figs. 1 an

Another important conclusion is that the heavy-atom d
formation component, at least for velocities sufficiently clo
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to the left edge of the HB band, can becompressional, i.e.,
r0,0, for both kinks and antikinks. Moreover, this compre
sion for antikinks~positive defects! exceeds that for kinks
~negative defects!. Finally, one can conclude that there exis
in the band~20! an interval such that the reasonable inequ
ties am,1 and2 l ,r0,0 hold.

It should be noticed that for an antikink~positive ionic
defect! the potential barrier disappears. The same is also
for the kink solutions, but only for supersonic velocitiesv
.v0) whenam.b/ l . For subsonic velocities the barrier st
exists although it is reduced. It follows from these rema
that the mobility of the positive defects exceeds that of
negative defects, in agreement with experimental data.

Thus, a type of two-component topological soliton th
can be called HB solitons has been exhibited in diatom
lattices with H-bonding properties. The results that we ha
presented here do not rely on specific parameter values o
Hamiltonian. They are based only on general features of
hydrogen bond, the vanishing of the barrier when the he
ions come close to each other, and the translation of
proton together with the motion of the adjacent heavy io
which can reasonably be expected to be valid for a hydrog
bonded chain. In fact, for proton transport in water, quant
,

ys
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chemistry calculations show that extended proton migrat
must occur in a concerted fashion requiring aninward fluc-
tuation of the O••• O distance@30#, in agreement with the
assumptions that underlie our calculations. The validity
the HB soliton for a three-dimensional system is, howev
still an open question, as well as its stability in the prese
of thermal fluctuations that could destroy the coherence n
essary for its propagation.
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